Lawrence Livermore National Laboratory

SCRAAM: The Southern California Reactor Antineutrino Anomaly Monitor

N. Bowden, A. Bernstein, T. Classen, S. Dazeley, G. Keefer

The Reactor Antineutrino Anomaly

- Mention, et al, re-analyzed many previous short baseline reactor experiments, in light of their new antineutrino flux prediction
- The result: new global "Reactor Antineutrino Anomaly" at 2 sigma significance:

$$N_{obs}/N_{pred} = 0.979 +/- 0.029 => 0.943 +/- 0.023$$

SCRAAM Proposal

- To test the anomaly, perform:
 - An independent re-evaluation of the antineutrino flux prediction
 - Highly desirable to bolster confidence in the result and examine systematics related to the procedure
 - A relatively rapid and inexpensive experimental measurement
 - requires a location with a high antineutrino flux and appropriate core-detector geometry

Independent Antineutrino Flux Prediction

- Exercise the same methodology as Mueller, et al, but in addition:
 - Incorporate a more precise treatment for generation of fission product beta spectra
 - Code base rigorously tested in KamLAND
 - Examine, via benchmarked reactor simulations, potential systematic related to use of ILL integral electron measurement
 - ILL Research reactor neutron flux differs from that in a PWR
 - Seek to benchmark the fission beta electron spectrum fitting procedure against a nonreactor fissile isotope
 - ²⁵²Cf is obvious candidate; would require measurement of ²⁵²Cf beta spectrum

PHYSICAL REVIEW C 81, 025807 (2010)

G. Keefer, PhD Thesis, University of Alabama, 2009

The San Onofre Nuclear Generating Station: Our (nonproliferation) laboratory for over a decade

Direct Observation of reactor fuel burnup via antineutrino counting

- We have cultivated an exceptionally strong and trusting relationship with SONGS:
 - A multitude of access requests have been readily granted since 1999
 - Provide unescorted reactor access, deployment assistance, commercially sensitive fueling data, introductions to other operators,
- We possess unparalleled operational experience in this industrial environment:
 - Five detector deployments since 2003

Tendon Galleries are Ideal Deployment Locations

- High Flux: $\sim 10^{17} \text{ v/m}^2/\text{s}$
- 130-180m to other reactor
- Gallery is annular unfortunately no possibility to vary baseline
 Lawrence Livermore National Laboratory

Tendon Gallery Access

Reactor Comparison

Reactor	Baseline	Core	Detector	ΔL/L (FWHM)	Power	Flux v/m²/s
ILL	10m	Ø0.4m x 0.2m (?)	Ø1mx1m	~8%	58 MW _{th}	~1x10 ¹⁶
Bugey	15m	Ø2.5 x 2.5m	1mx1m	~30%	2800 MW _{th}	~2x10 ¹⁷
SONGS	24m	Ø3m x 2m	Ø1mx2m	~10%	3400 MW _{th}	~1x10 ¹⁷

Lawrence Livermore National Laboratory

LLNL-PRES-483483

Effect of Baseline, Baseline Distribution

 $(\sin^2(2\theta) = 0.165, \Delta m^2 = 2.4 \text{ eV}^2)$

The SCRAAM Detector Concept

- A relatively long/narrow geometry is needed: Ø1m x 2m length
 - Tendon gallery is fairly narrow
 - Minimize ΔL/L
- 1.5 ton active mass
 - ~9000 inverse beta interactions/day
- Double ended readout and diffuse reflective coating
 - good light collection and position uniformity
 - should easily achieve 10% energy resolution at 1MeV
- Guide tubes for calibration
- Partial "gamma catcher":
 - increase efficiency, precision
- Component costs: \$700-900k

Lawrence Livermore National Laboratory

Detection Rate, Detector Systematics

- Assuming 40% efficiency, expect detection rate of about 4000 v/day
- Precision on absolute efficiency of ~ 4% would require considerable effort, but appears feasible
- Extensive source calibrations would be required

Systematic	Target Value	Mitigation	
No. of target protons	1.5%	Weighting, solvent selection	
Neutron efficiency	1.5%	Gamma catcher, calibration	
Positron efficiency	1%	calibration, ideally $\approx 500 \text{ keV}$ threshold	
Core-Detector distance	0.5%	Through document review, possible survey	
Deadtime	0.25%	precise measurement, tracking	
Detector Total (Flux Measurement)	2.4%		
Reactor Systematics	2.7%		
Total on N_{obs}/N_{pred}	3.6%		

We have completed considerable R&D on detectors of this scale

- Most recent: 3.6 ton liquid scintillator detector (BC-525, 0.1% Gd)
 - For deployment at a CANDU6 reactor in 2012
 - Understand safety and regulatory requirements for reactor site
 - Successful commissioning run just completed
 - Validated mechanical design for double ended PMT readout

150 days, $\sin^2(2\theta) = 0.165$, $\Delta m^2 = 0.15 \text{ eV}^2$

150 days, $\sin^2(2\theta) = 0.165$, $\Delta m^2 = 0.6 \text{ eV}^2$

150 days, $\sin^2(2\theta) = 0.165$, $\Delta m^2 = 1.2eV^2$

150 days, $\sin^2(2\theta) = 0.165$, $\Delta m^2 = 2.4 \text{ eV}^2$

150 days, $\sin^2(2\theta) = 0.165$, $\Delta m^2 = 4.8 \text{eV}^2$

Exclusion: Rate

150 days, 3.6% systematic (uncorrelated), 99% C.L.

Exclusion: Rate + Shape

150 days, 1.5% systematic (bin-to-bin uncorrelated), 99% C.L.

Sensitivity to oscillation parameter values

150 days, 1.5% systematic (bin-to-bin uncorrelated), 99% C.L.

Sensitivity to oscillation parameter values

150 days, 1.5% systematic (bin-to-bin uncorrelated), 99% C.L.

Sensitivity to oscillation parameter values

150 days, 1.5% systematic (bin-to-bin uncorrelated), 99% C.L.

Provides a strong test of the low ∆m² region excluded by Bugey3 shape

Schedule

- Reactor refueling outages are key background measurement:
 - Unit 3 in Oct. 2012
 - Unit 2 in Sept. 2013
- Given our recent experience, 15-18 months from design to deployment seems feasible
- Could have first results within ~9 months of data taking

Conclusion

- The "RAA" must be investigated. We propose to so so by:
 - An independent reactor antineutrino flux prediction
 - A relatively rapid and inexpensive experimental measurement
- Our group has considerable relevant expertise:
 - Reactor simulations
 - Precision beta spectrum generator code
 - Compact antineutrino detector design
 - Access to a favourable reactor deployment site
- The SONGS site is optimal for a power reactor deployment
 - High flux, good overburden, and narrow ΔL/L
- SCRAAM would rapidly exclude a large fraction of the "RAA" allowed phase space, and have discovery potential in the "best-fit" region